csep.plots.plot_calibration_test
- csep.plots.plot_calibration_test(evaluation_result, percentile=95, label=None, ax=None, show=False, **kwargs)[source]
Plots a calibration test (Quantile-Quantile plot) with confidence intervals.
- Parameters:
evaluation_result (EvaluationResult) – The evaluation result object containing the test distribution.
percentile (float, optional) – Percentile to build confidence interval. Defaults to 95.
ax (matplotlib.axes.Axes, optional) – Axes object to plot on. If None, creates a new figure. Defaults to None.
label (str, optional) – Label for the plotted data. If None, uses evaluation_result.sim_name. Defaults to None.
show (bool, optional) – If True, displays the plot. Defaults to False.
**kwargs (optional) –
Additional keyword arguments for customizing the plot:
color (str): Color of the plot line and markers.
marker (str): Marker style for the data points.
markersize (float): Size of the markers.
grid (bool): Whether to display grid lines. Defaults to True.
title (str): Title of the plot.
title_fontsize (int): Font size for the plot title.
xlabel (str): Label for the X-axis.
xlabel_fontsize (int): Font size for the X-axis label.
ylabel (str): Label for the Y-axis.
ylabel_fontsize (int): Font size for the Y-axis label.
legend_loc (str): Location of the legend. Defaults to ‘best’.
legend_fontsize (int): Font size of the legend text.
tight_layout (bool): Whether to use tight layout for the figure. Defaults to True.
- Returns:
The Matplotlib axes object containing the plot.
- Return type:
Changed in version 0.8.0: plot_args dictionary is only partially supported and will be removed in v1.0.0.
Added in version 0.8.0: Added percentile option.