csep.plots.plot_test_distribution
- csep.plots.plot_test_distribution(evaluation_result, bins='fd', percentile=95, auto_annotate=True, sim_label='Simulated', obs_label='Observation', legend=True, ax=None, show=False, **kwargs)[source]
Plots the histogram of a test statistic distribution calculated from stochastic event sets along with the observed statistic.
Usage Tutorials
- Parameters:
evaluation_result (EvaluationResult) – Result containing test distributions and observed statistics.
bins (str, int, or list, optional) – Binning strategy for the histogram. See
matplotlib.pyplot.hist()for details on this parameter. Defaults to ‘fd’.percentile (int, optional) – Percentile for shading regions. Defaults to 95.
ax (matplotlib.axes.Axes, optional) – Axes object to plot on. If None, creates a new figure and axes. Defaults to None.
auto_annotate (bool or dict, optional) – If True, automatically formats the plot details based on the evaluation result. It can be further customized by passing the keyword arguments xlabel, ylabel, annotation_text, annotation_xy, and annotation_fontsize. Defaults to True.
sim_label (str, optional) – Label for the simulated data. Defaults to ‘Simulated’.
obs_label (str, optional) – Label for the observation data. Defaults to ‘Observation’.
legend (bool, optional) – Whether to display the legend. Defaults to True.
show (bool, optional) – If True, shows the plot. Defaults to False.
**kwargs (optional) –
Additional keyword arguments for plot customization.
color (str): Color of the histogram bars.
alpha (float): Transparency level for the histogram bars.
figsize (tuple): The size of the figure.
xlim (tuple): Limits for the X-axis.
grid (bool): Whether to display grid lines. Defaults to True.
legend_loc (str): Location of the legend. Defaults to ‘best’.
legend_fontsize (int): Font size of the legend text.
xlabel (str): Label of the X-axis. If auto_annotate is True, will be set to the test statistic name.
ylabel (str): Label of the Y-axis.
annotate_text (str): Text to annotate the plot with. If auto_annotate is True, it will provide information about the statistics of the test.
annotate_xy (tuple): Position for annotate_text in axes fraction. Can be used to override position of auto_annotate if not optimal.
annotate_fontsize (int): Size of the annotation.
tight_layout (bool): Whether to use tight layout for the figure. Defaults to True.
- Returns:
Matplotlib axes handle.
- Return type:
Changed in version 0.8.0: This function was renamed from plot_distribution_test and replaces plot_spatial_test, plot_number_test, plot_magnitude_test and plot_likelihood_test. plot_args dictionary is only partially supported and will be removed in v1.0.0.
Added in version 0.8.0: Added auto_annotate function to detect which test is being plotted and write down labels and quantiles accordingly.