csep.utils.plots.plot_poisson_consistency_test
- csep.utils.plots.plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower=False, axes=None, plot_args=None, show=False)[source]
Plots results from CSEP1 tests following the CSEP1 convention.
- Note: All of the evaluations should be from the same type of evaluation, otherwise the results will not be
comparable on the same figure.
- Parameters:
results (list) – Contains the tests results
csep.core.evaluations.EvaluationResult(see note above)normalize (bool) – select this if the forecast likelihood should be normalized by the observed likelihood. useful for plotting simulation based simulation tests.
one_sided_lower (bool) – select this if the plot should be for a one sided test
plot_args (dict) – optional argument containing a dictionary of plotting arguments, with keys as strings and items as described below
- Optional plotting arguments:
title: (
str) - default: name of the first evaluation result typetitle_fontsize: (
float) Fontsize of the plot title - default: 10xlabel: (
str) - default: ‘X’xlabel_fontsize: (
float) - default: 10xticks_fontsize: (
float) - default: 10ylabel_fontsize: (
float) - default: 10color: (
float/None) If None, sets it to red/green according to_get_marker_style()- default: ‘black’linewidth: (
float) - default: 1.5capsize: (
float) - default: 4hbars: (
bool) Flag to draw horizontal bars for each model - default: Truetight_layout: (
bool) Set matplotlib.figure.tight_layout to remove excess blank space in the plot - default: True
- Returns:
ax (
matplotlib.pyplot.axesobject)